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Abstract 
A method for reconstructing phase disturbances of a probing light field using the iterative 

Gauss-Newton algorithm is discussed as part of the Hilbert diagnostics development of 
gaseous, condensed and reacting media. In this case, the need to determine second 
derivatives is eliminated, which simplifies the calculations. The method consists of selecting a 
phase profile, which is specified by a Bezier curve, and hilbertogram calculating. The 
coincidence of the reference and reconstructed hilbertograms serves as a criterion for the 
results reliability. The Jacobian matrix for the nonlinear integral operator of Hilbert 
visualization is obtained. The algorithm is analyzed using a test function. The method 
development is associated with the algorithm application to the processing of experimental 
results, including the reconstruction of complex structures in which the phase function is 
described by several Bezier polynomials.  

Keywords: Hilbert optics, phase function, optimization, Gauss-Newton method. 

 

1. Introduction 
The Hilbert diagnostics of phase structures is the important result of a fruitful synthesis 

of methods developed in optics and radio engineering [1, 2]. This is an integral operation that 
signal energy redistributes in a given band of spatial frequencies of the probing field 
perturbed by the medium under study. The energy loss of the optical signal is minimized in 
this case. The Hilbert transform in the frequency space is reduced to a certain type of phase 
transformation of the signal Fourier spectrum with energy conservation in a wide frequency 
band. 

The Hilbert diagnostics results of reacting jets were previously presented in [3, 4]. The 
possibility of polychromatic Hilbert visualization of phase optical density fields with 
temperature profile measurement in selected sections of the medium under study is shown 
using the example of an axisymmetric hydrogen-air diffusion flame and a candle flame using 
the Abel transform. Iterative selection of radial temperature profiles fitted by Bezier curves, 
followed by spatial structure calculation of the refractive index and phase function, is 
performed. Comparison of hilbertograms obtained in the experiment with hilbertograms 
modeled in the approximation of axial symmetry of the flame is a criterion for the research 
results reliability. 

The Gauss-Newton method application [5, 6] is proposed to iterative algorithm optimize 
for reconstructing the phase function in Hilbert diagnostics in this paper. This is an iterative 
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numerical method for solving the least squares problem, a Newton's method modification for 
finding the objective function minimum. It does not require the second derivatives definition, 
unlike Newton's method, which greatly simplifies and reduces the calculations number [7]. 
Various modifications of the Gauss-Newton method that increase the convergence rate and 
reduce of the ill-posedness influence in the formulation problem (in particular, the 
Levenberg-Marquardt algorithm [8]) are presented in [9–11]. The Gauss-Newton method is 
effective in solving many optimization problems, it is easy to implement and is present in 
most software packages for applied mathematics. 

2. Inverse problem of phase function reconstructing from 
hilbertograms 

Let us turn to Fig. 1, where the selected section 𝑦̂ of the studied phase object with a radial 
distribution of the refractive index 𝑛(𝑟) is shown in a simplified way, the 𝑧 axis coincides with 
the direction of the probing light beam. 

 

 
Fig. 1. Scheme for diagnosing a phase object (axisymmetric approximation): 

𝑛(𝑟) – radial distribution of the refractive index. 
 
Phase perturbations ∆𝜓(𝑥, 𝑦̂) of the probing light field that has passed through the 

medium under study depend on the geometric path length and the refractive index 𝑛(𝑥, 𝑦̂, 𝑧): 

 ∆𝜓(𝑥, 𝑦̂) =
2𝜋

𝜆
∫ [𝑛(𝑥, 𝑦̂, 𝑧) − 𝑛∞]𝑑𝑧,
𝑧2

𝑧1

  

where 𝜆 is the wavelength, 𝑛∞ is the refractive index of air, 𝑧1 and 𝑧2 are the entry and exit 
points of the beam from the object. 

The nonlinear integral operator of the first kind is a mathematical model of the Hilbert 
visualization of the phase shift ∆𝜓(𝑥, 𝑦̂): 

𝐻[∆𝜓](𝑥∗, 𝑦̂) = {∫
cos[∆𝜓(𝑥, 𝑦̂)]

𝑥∗ − 𝑥

+∞

−∞

𝑑𝑥}

2

+ {∫
sin[∆𝜓(𝑥, 𝑦̂)]

𝑥∗ − 𝑥

+∞

−∞

𝑑𝑥}

2

. (1) 

The inverse problem consists in reconstructing the function ∆𝜓(𝑥, 𝑦̂) from the 
𝐻[∆𝜓](𝑥∗, 𝑦̂) values, which are recorded in the experiment. 

The method based on the successive selection of the profile ∆𝜓(𝑥, 𝑦̂) and calculation of 
the hilbertogram 𝐻[∆𝜓](𝑥∗, 𝑦̂) is proposed for the solution. The local extrema coincidence of 
the experimental and reconstructed hilbertograms serves as a criterion for stopping the 
procedure.  

The desired phase perturbation function ∆𝜓(𝑥, 𝑦̂) in the section 𝑦̂ on the interval [−𝑟0, 𝑟0] 
is modeled by Bernstein polynomials of the n-th order (Bezier curves) in the smooth fields 
case [12]: 



∆𝜓(𝑥, 𝑦̂) =

{
 
 

 
 𝑥(𝑡, 𝑃𝑥) = ∑ 𝑃𝑥,𝑚

𝑛

𝑚=0

𝑏𝑚,𝑛(𝑡)

𝑦(𝑡, 𝑃𝑦) = ∑ 𝑃𝑦,𝑚

𝑛

𝑚=0

𝑏𝑚,𝑛(𝑡)

;         𝑡 ∈ [0,1]; (2) 

where (𝑃𝑥,𝑚 , 𝑃𝑦,𝑚) are the vectors components of the reference vertexes, 𝑏𝑚,𝑛(𝑡) are the basis 

functions of the Bezier curve, called Bernstein polynomials:  

𝑏𝑚,𝑛(𝑡) =
𝑛!

𝑚! (𝑛 −𝑚)!
𝑡𝑚(1 − 𝑡)𝑛−𝑚 ,  

𝑛 is the polynomial degree, 𝑚 is the ordinal number of the reference vertex. The function 
∆𝜓(𝑥, 𝑦̂) = 0 outside the interval [−𝑟0, 𝑟0].  

The equality ∆𝜓[𝑥(𝑡), 𝑦̂] = 𝑦(𝑥(𝑡)) is valid in the section 𝑦̂ for the phase function (2) and 

any parameter 𝑡, while ∆𝜓(𝑥, 𝑦̂) depends on the coordinates of the reference points 𝑃⃗ . Denote 

its Hilbert image by 𝐻
𝑃⃗ 
𝑜𝑝𝑡

. It is calculated taking into account formula (1) as follows:  

𝐻
𝑃⃗ 
𝑜𝑝𝑡[𝑦](𝑥∗) = {∫

cos[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

𝑑𝑥}

2

+ {∫
sin[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

𝑑𝑥}

2

. (3) 

As 𝑑𝑥 = 𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡, where 𝑥𝑡

′ = 𝑑𝑥/𝑑𝑡, equation (3) can be represented as  

𝐻
𝑃⃗ 
𝑜𝑝𝑡[𝑦](𝑥∗) = {∫

cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)

1

0

𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡}

2

+ {∫
sin[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)

1

0

𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡}

2

. (4) 

The optimization problem is to determine those values of the parameters (𝑃𝑥,0, …, 𝑃𝑥,𝑛) 

and (𝑃𝑦,0, …, 𝑃𝑦,𝑛), at which the objective function minimum is reached: 

𝑓(𝑃⃗ ) = ‖𝐹(𝑃⃗ )‖
2
=∑[𝐻𝑟𝑒𝑓(𝑥𝑘) − 𝐻𝑃⃗ 

𝑜𝑝𝑡(𝑥𝑘) ]
2

𝑁

𝑘=0

,   𝑥𝑘 ∈ [−𝑟0, 𝑟0], (5) 

where 𝐻𝑟𝑒𝑓  is the hilbertogram recorded in the experiment (reference data).  

3. Gauss-Newton method 
In general terms, the optimization problem is to find the extremum (minimum) of the 

objective function:  

𝑓(𝑢⃗ ) = ‖𝐹(𝑢⃗ )‖2 = ∑[𝑎𝑘(𝑢⃗ ) − 𝑏𝑘]
2

𝑁

𝑘=0

, 

𝑢⃗ = (𝑢1, … , 𝑢𝑚) ∈ ℝ
𝑚 . 

 

The iterative Gauss-Newton method, which uses the Jacobian matrix 𝐽 of first-order 
derivatives of the function 𝐹(𝑢⃗ ) to find the vector 𝑢∗⃗⃗⃗⃗  that minimizes 𝑓(𝑢⃗ ), is one way to solve 
this problem.  

The Jacobian matrix is determined by the formula [13, 14]:  

𝐽(𝑢⃗ ) = [
𝜕𝑎𝑘(𝑢⃗ )

𝜕𝑢𝑗
]
𝑘=1,𝑗=1

𝑁,𝑚

.  

The Gauss-Newton method consists in performing successive approximations 𝑢𝑑+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
according to the expression:  

𝑢𝑑+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑢𝑑⃗⃗ ⃗⃗  − 𝛼[𝐽
𝑇(𝑢𝑑⃗⃗ ⃗⃗  )𝐽(𝑢𝑑⃗⃗ ⃗⃗  )]

−1𝐽𝑇(𝑢𝑑⃗⃗ ⃗⃗  )𝐹(𝑢𝑑⃗⃗ ⃗⃗  ), (6) 
where 𝑑 is the iteration number, 𝛼 is the coefficient used to regulate the optimization "step" 
[6], 𝐽𝑇 is the transposed matrix.  

Denote  

𝐻𝑘
𝑟𝑒𝑓

= 𝐻𝑟𝑒𝑓(𝑥𝑘),   𝐻𝑘
𝑜𝑝𝑡[𝑦(𝑥(𝑡, 𝑃𝑥), 𝑃𝑦)] = 𝐻𝑃⃗ 

𝑜𝑝𝑡(𝑥𝑘).  

Then the objective function components (5) in the case of hilbertogram processing can be 
written as  



𝐹 = {

𝐻0
𝑟𝑒𝑓

−𝐻0
𝑜𝑝𝑡[𝑦(𝑥(𝑡, 𝑃𝑥), 𝑃𝑦)]

⋮

𝐻𝑁
𝑟𝑒𝑓

−𝐻𝑁
𝑜𝑝𝑡[𝑦(𝑥(𝑡, 𝑃𝑥), 𝑃𝑦)]

}. (7) 

The partial derivatives values with respect to the components of the vector 𝑃⃗  of the 
function (4) will be found to determine the Jacobi matrix 𝐽. First, we write down the values of 
derivatives with respect to 𝑃𝑥 coordinates:  

𝜕𝐻𝑜𝑝𝑡

𝜕𝑃𝑥
(𝑥∗) = |{∫

cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)

1

0

𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡}

2

|

𝑃𝑥

′

+ |{∫
sin[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)

1

0

𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡}

2

|

𝑃𝑥

′

= 

= 𝐴𝑥 + 𝐵𝑥. 

 

Then  

𝐴𝑥 = 2∫
cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡 ∙ |∫

cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡

1

0

|
𝑃𝑥

′1

0

.  

Since  

|
cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡|

𝑃𝑥

′

= cos[𝑦(𝑡, 𝑃𝑦)] |
𝑥𝑡
′(𝑡, 𝑃𝑥)

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
|
𝑃𝑥

′

,  

and  

|
𝑥𝑡
′(𝑡, 𝑃𝑥)

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
|
𝑃𝑥

′

=
|𝑥𝑡
′(𝑡, 𝑃𝑥)|𝑃𝑥

′ ∙ [𝑥∗ − 𝑥(𝑡, 𝑃𝑥)] − 𝑥𝑡
′(𝑡, 𝑃𝑥) ∙ |𝑥

∗ − 𝑥(𝑡, 𝑃𝑥)|𝑃𝑥
′

[𝑥∗ − 𝑥(𝑡, 𝑃𝑥)]2
,  

it follows that  

|
cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡|

𝑃𝑥

′

= cos[𝑦(𝑡, 𝑃𝑦)]
𝑤1 ∙ [𝑥

∗ − 𝑥(𝑡, 𝑃𝑥)] + 𝑤2 ∙ 𝑥𝑡
′(𝑡, 𝑃𝑥)

[𝑥∗ − 𝑥(𝑡, 𝑃𝑥)]2
,  

where 
𝑤1 = |𝑥𝑡

′(𝑡, 𝑃𝑥)|𝑃𝑥
′ , 

𝑤2 = −|𝑥∗ − 𝑥(𝑡, 𝑃𝑥)|𝑃𝑥
′ = |𝑥(𝑡, 𝑃𝑥)|𝑃𝑥

′ . 
 

Thus  

𝐴𝑥 = 2∫
cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡

1

0

∙ 

∙ {∫
cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑤1𝑑𝑡

1

0

+∫
cos[𝑦(𝑡, 𝑃𝑦)]

[𝑥∗ − 𝑥(𝑡, 𝑃𝑥)]2
𝑤2 ∙ 𝑥𝑡

′(𝑡, 𝑃𝑥)𝑑𝑡
1

0

}, 

 

or  

𝐴𝑥 = {𝐼1 + 𝐼2} ∙ 2∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

𝑑𝑥,  

where  

𝐼1 = ∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥
∙

𝑟0

−𝑟0

𝑤1
𝑥𝑡
′(𝑡, 𝑃𝑥)

𝑑𝑥,  

𝐼2 = ∫
cos[𝑦(𝑥)]

[𝑥∗ − 𝑥]2

𝑟0

−𝑟0

∙ 𝑤2𝑑𝑥. 
(8) 

We transform (8) by integration by parts: 

𝐼2 = −∫
|cos[𝑦(𝑥)] ∙ 𝑤2|𝑥

′

𝑥∗ − 𝑥

𝑟0

−𝑟0

𝑑𝑥.  

Since  
|cos[𝑦(𝑥)] ∙ 𝑤2|𝑥

′ = |cos[𝑦(𝑥)]|𝑥
′ ∙ 𝑤2 + cos[𝑦(𝑥)] ∙ |𝑤2|𝑥

′ , 

|cos[𝑦(𝑥)]|𝑥
′ = −sin[𝑦(𝑥)]

𝑦𝑡
′(𝑡, 𝑃𝑦)

𝑥𝑡
′(𝑡, 𝑃𝑥)

, 
 



|𝑤2|𝑥
′ =

|𝑤2|𝑡
′

𝑥𝑡
′(𝑡, 𝑃𝑥)

=
𝑤1

𝑥𝑡
′(𝑡, 𝑃𝑥)

, 

then  

𝐼2 = ∫
sin[𝑦(𝑥)]

𝑥∗ − 𝑥
∙

𝑟0

−𝑟0

𝑦𝑡
′(𝑡, 𝑃𝑦)

𝑥𝑡
′(𝑡, 𝑃𝑥)

∙ 𝑤2𝑑𝑥 −∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

∙
𝑤1

𝑥𝑡
′(𝑡, 𝑃𝑥)

𝑑𝑥.  

As a result, we arrive at the equality  

𝐴𝑥 = 2∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

𝑑𝑥 {∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥
∙

𝑟0

−𝑟0

𝑤1
𝑥𝑡
′(𝑡, 𝑃𝑥)

𝑑𝑥 + 

+∫
sin[𝑦(𝑥)]

𝑥∗ − 𝑥
∙

𝑟0

−𝑟0

𝑦𝑡
′(𝑡, 𝑃𝑦)

𝑥𝑡
′(𝑡, 𝑃𝑥)

∙ 𝑤2𝑑𝑥 − ∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

∙
𝑤1

𝑥𝑡
′(𝑡, 𝑃𝑥)

𝑑𝑥} = 

= 2∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

𝑑𝑥∫
sin[𝑦(𝑥)]

𝑥∗ − 𝑥
∙

𝑟0

−𝑟0

𝑦𝑡
′(𝑡, 𝑃𝑦)

𝑥𝑡
′(𝑡, 𝑃𝑥)

∙ 𝑤2𝑑𝑥. 

 

Similarly, one can show that  

𝐵𝑥 = −2∫
sin[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

𝑑𝑥∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥
∙

𝑟0

−𝑟0

𝑦𝑡
′(𝑡, 𝑃𝑦)

𝑥𝑡
′(𝑡, 𝑃𝑥)

∙ 𝑤2𝑑𝑥.  

Now we write down the values of derivatives with respect to 𝑃𝑦 coordinates:  

𝜕𝐻𝑜𝑝𝑡

𝜕𝑃𝑦
(𝑥∗) = |{∫

cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)

1

0

𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡}

2

|

𝑃𝑦

′

+ |{∫
sin[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)

1

0

𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡}

2

|

𝑃𝑦

′

= 

= 𝐴𝑦 + 𝐵𝑦. 

 

Then  

𝐴𝑦 = 2∫
cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡 |∫

cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡

1

0

|
𝑃𝑦

′1

0

.  

Since  

|
cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥)|

𝑃𝑦

′

=
𝑥𝑡
′(𝑡, 𝑃𝑥)

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
∙ |cos[𝑦(𝑡, 𝑃𝑦)]|𝑃𝑦

′
, 

|cos[𝑦(𝑡, 𝑃𝑦)]|𝑃𝑦

′
= −sin[𝑦(𝑡, 𝑃𝑦)] ∙ 𝑤2, 

 

we get  

𝐴𝑦 = −2∫
cos[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥)𝑑𝑡

1

0

∫
sin[𝑦(𝑡, 𝑃𝑦)]

𝑥∗ − 𝑥(𝑡, 𝑃𝑥)
𝑥𝑡
′(𝑡, 𝑃𝑥) ∙ 𝑤2𝑑𝑡,

1

0

  

or  

𝐴𝑦 = −2∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

𝑑𝑥∫
sin[𝑦(𝑥)]

𝑥∗ − 𝑥
∙ 𝑤2𝑑𝑥

𝑟0

−𝑟0

.  

Similarly  

𝐵𝑦 = 2∫
sin[𝑦(𝑥)]

𝑥∗ − 𝑥

𝑟0

−𝑟0

𝑑𝑥∫
cos[𝑦(𝑥)]

𝑥∗ − 𝑥
∙ 𝑤2𝑑𝑥

𝑟0

−𝑟0

.  

As a result, the Jacobian matrix will have the following form:  

𝐽 =

{
 
 

 
 𝜕𝐻0

𝑜𝑝𝑡

𝜕𝑃𝑥,0
…

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑥,𝑛
⋮ ⋱ ⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑥,0
…

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑥,𝑛

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑦,0
…

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑦,𝑛
⋮ ⋱ ⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑦,0
…

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑦,𝑛 }
 
 

 
 

. (9) 

The Gauss-Newton algorithm (6), taking into account (7) and (9), will be defined as 

𝑃𝑑+1⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗ = 𝑃𝑑⃗⃗⃗⃗ − 𝛼[𝐽
𝑇𝐽]−1𝐽𝑇𝐹(𝑃𝑑⃗⃗⃗⃗ ). (10) 



Thus, optimization begins with setting the vector components 𝑃0⃗⃗⃗⃗ , which determine the 
phase function initial profile, then applying formula (10) step by step, and terminating the 
calculation process when the squared distances sum between the extrema coordinates of the 
reference and optimized hilbertograms becomes less than the specified value.  

4. Algorithm application on the test function example 
It is sufficient to determine the phase function only on the interval [0, 𝑟0] in the case of 

axisymmetric objects.  
Let's simulate an example when an axisymmetric object with a section radius 𝑟0 = 30 mm 

is diagnosed. Define ∆𝜓(𝑥, 𝑦̂) within 0 ≤ 𝑥 ≤ 𝑟0 as a parametric Bezier curve of the third 
degree: 

∆𝜓(𝑥, 𝑦̂) = {
𝑥(𝑡) = (1 − 𝑡)3𝑃𝑥,0 + 3(1 − 𝑡)

2𝑡𝑃𝑥,1 + 3(1 − 𝑡)𝑡
2𝑃𝑥,2 + 𝑡

3𝑃𝑥,3
𝑦(𝑡) = (1 − 𝑡)3𝑃𝑦,0 + 3(1 − 𝑡)

2𝑡𝑃𝑦,1 + 3(1 − 𝑡)𝑡
2𝑃𝑦,2 + 𝑡

3𝑃𝑦,3
,  

for 𝑥 ≥ 𝑟0 the value ∆𝜓(𝑥, 𝑦̂) = 0, and we continue it in an even way to the region  
−𝑟0 ≤ 𝑥 ≤ 0.  

The pixel size in the image corresponded to 1/30 mm when registering the optical signal 
in the experiments [3, 4]. Therefore, the number of samples 𝑁 = 1801 in the interval [−𝑟0, 𝑟0].  

The function graph ∆𝜓(𝑥, 𝑦̂) and its hilbertogram is shown in Fig. 2 for the reference 
points values  

{𝑃𝑥,0 = 0, 𝑃𝑦,0 = 50},   {𝑃𝑥,1 = 15, 𝑃𝑦,1 = 50},   {𝑃𝑥,2 = 15, 𝑃𝑦,2 = 0}, 

{𝑃𝑥,3 = 30, 𝑃𝑦,3 = 0}. 
 

 

 
Fig. 2. The phase function represented by the Bezier curve (with reference vertices) and the 

hilbertogram calculated from it. The hilbertogram is presented in a dimensionless form with 
indication of the local extrema points. 

 

The hilbertogram shown in Fig. 2 will be taken as the reference 𝐻𝑟𝑒𝑓, and the phase 
function corresponding to it will be denoted by ∆𝜓𝑟𝑒𝑓. Let us consider the biased function 

𝐻𝑜𝑝𝑡  as an initial approximation, which must be optimized to 𝐻𝑟𝑒𝑓  (Fig. 3). 
 



 
Fig. 3. Reference hilbertogram 𝐻𝑟𝑒𝑓  and initial (optimized) hilbertogram 𝐻𝑜𝑝𝑡 , and their  

corresponding phase functions. 
 

In this case, the parameter 𝑤2 for derivatives with respect to the vector 𝑃⃗  will have the 
values presented in Table 1.  

 
Table 1. Derivatives with respect to 𝑃𝑥 and 𝑃𝑦 coordinates  

Coordinates 𝑷𝒙 Coordinates 𝑷𝒚 𝒘𝟐 

𝑃𝑥,0 𝑃𝑦,0 (1 − 𝑡)3 

𝑃𝑥,1 𝑃𝑦,1 3(1 − 𝑡)2𝑡 

𝑃𝑥,2 𝑃𝑦,2 3(1 − 𝑡)𝑡2 

𝑃𝑥,3 𝑃𝑦,3 𝑡3 

 
The Jacobian matrix will have the following form: 

𝐽 =

{
 
 

 
 𝜕𝐻0

𝑜𝑝𝑡

𝜕𝑃𝑥,0
⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑥,0

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑥,1
⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑥,1

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑥,2
⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑥,2

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑥,3
⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑥,3

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑦,0
⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑦,0

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑦,1
⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑦,1

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑦,2
⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑦,2

𝜕𝐻0
𝑜𝑝𝑡

𝜕𝑃𝑦,3
⋮

𝜕𝐻𝑁
𝑜𝑝𝑡

𝜕𝑃𝑦,3 }
 
 

 
 

.  

The root-mean-square error between the hilbertogram 𝐻𝑟𝑒𝑓  and 𝐻𝑜𝑝𝑡  after 30 iterations 
as a result of applying the Gauss-Newton method (10) has reached the value  

𝜎ср = √∑(𝐻𝑘
𝑜𝑝𝑡 − 𝐻𝑘

𝑟𝑒𝑓
)
2

𝑁

𝑘=0

= 0,09,  

while the maximum deviation was  

𝜎𝑚𝑎𝑥 = max
𝑘=0,…,𝑁

|𝐻𝑘
𝑜𝑝𝑡

−𝐻𝑘
𝑟𝑒𝑓
| = 0,005.  

The phase function ∆𝜓𝑜𝑝𝑡 obtained as a result of optimization is shown in Fig. 4.  



 
Fig. 4. Optimization result. 

 
The maximum deviation of ∆𝜓𝑜𝑝𝑡 from ∆𝜓𝑟𝑒𝑓 was  

𝜎𝑚𝑎𝑥(∆𝜓) = max
𝑘=0,…,𝑁

|∆𝜓𝑘
𝑜𝑝𝑡

− ∆𝜓𝑘
𝑟𝑒𝑓
| = 0,01.  

The initial approximation 𝐻𝑜𝑝𝑡  in the considered example was chosen in such a way that 

the number of Hilbert bands 𝐻𝑟𝑒𝑓  and 𝐻𝑜𝑝𝑡  coincided. Let's try to estimate the “limit” 
deviation of the initial approximation 𝐻𝑜𝑝𝑡 , at which the Gauss-Newton algorithm begins to 
work incorrectly (Fig. 5 and 6). 

 

 
a 



 
b 

Fig. 5. (a) – Reference hilbertogram 𝐻𝑟𝑒𝑓  and initial (optimized) hilbertogram 𝐻𝑜𝑝𝑡 , and their 
corresponding phase functions (second approximation); (b) – optimization result. 

 
Let the initial approximation 𝐻𝑜𝑝𝑡  be smaller by one Hilbert band in the ranges [−𝑟0; 0] 

and [0; 𝑟0] than the hilbertogram 𝐻𝑟𝑒𝑓  (as shown in Fig. 5.a). As a result, the following values 
were achieved after 12 iterations (Fig. 5.b): 

𝜎ср = √∑(𝐻𝑘
𝑜𝑝𝑡 − 𝐻𝑘

𝑟𝑒𝑓
)
2

𝑁

𝑘=0

= 6,54, 𝜎𝑚𝑎𝑥 = max
𝑘=0,…,𝑁

|𝐻𝑘
𝑜𝑝𝑡 − 𝐻𝑘

𝑟𝑒𝑓
| = 0,45, 

𝜎𝑚𝑎𝑥(∆𝜓) = max
𝑘=0,…,𝑁

|∆𝜓𝑘
𝑜𝑝𝑡

− ∆𝜓𝑘
𝑟𝑒𝑓
| = 10,88. 

 

Now let’s set the 𝐻𝑜𝑝𝑡  so that the number of Hilbert bands is greater by one in the same 
ranges [−𝑟0; 0] and [0; 𝑟0] (Fig. 6.a). 

 

 
a 



 
b 

Fig. 6. (a) – Reference hilbertogram 𝐻𝑟𝑒𝑓  and initial (optimized) hilbertogram 𝐻𝑜𝑝𝑡 , and their 
corresponding phase functions (third approximation); (b) – optimization result. 

 
As a result, after 41 iterations we obtained (Fig. 6.b): 

𝜎ср = √∑(𝐻𝑘
𝑜𝑝𝑡 − 𝐻𝑘

𝑟𝑒𝑓
)
2

𝑁

𝑘=0

= 6,85, 𝜎𝑚𝑎𝑥 = max
𝑘=0,…,𝑁

|𝐻𝑘
𝑜𝑝𝑡 −𝐻𝑘

𝑟𝑒𝑓
| = 0,46, 

𝜎𝑚𝑎𝑥(∆𝜓) = max
𝑘=0,…,𝑁

|∆𝜓𝑘
𝑜𝑝𝑡 − ∆𝜓𝑘

𝑟𝑒𝑓
| = 33,38. 

 

Thus, it was found that for the convergence of the Gauss-Newton algorithm it is necessary 

that the number of Hilbert bands 𝐻𝑜𝑝𝑡and 𝐻𝑟𝑒𝑓  be equal. In practice, of course, it is necessary 
that the Hilbert bands of the experimental and optimized hilbertograms be as “close” to each 
other as possible.  

5. Conclusion 
The Gauss-Newton method is adapted to the problem of phase function determining from 

Hilbert diagnostic data of gaseous, condensed and reacting media. The phase structure 
reconstruction algorithm is based on the sequential selection of the phase profile specified by 
the Bézier polynomial and subsequent calculation of the hilbertogram. The local extrema 
coincidence of the reference and reconstructed hilbertograms is a criterion for the results 
reliability. The Jacobian matrix calculation for the nonlinear integral operator of Hilbert 
visualization has been completed, and an operation example of the algorithm for the test 
function in the case of an axisymmetric formulation of the problem is given.  

Direction of further research: application of the algorithm to the experimental data 
processing. Adaptation of the Gauss-Newton method to the possibility of specifying the 
desired phase function using several Bezier curves in cases of diagnosing complex structures. 

 
The work of the first author was carried out within the framework of the state assignment 

of IM SB RAS (No. FWNF-2022-0009), and the work of the other authors was carried out 
within the framework of the state assignment of IT SB RAS (No. 121031800217-8). 
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